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Abstract 

This paper presents the application of a numerical method for gas dynamics to model supersonic flows in a gas 
continuous, two-fluid medium. Specifically, flows in the two-phase medium are modeled only as single-phase 
compressible flow in a fixed, complex, multidimensional geometry. Coupling effects involving liquid response to 
interfacial forces are neglected. The motivation for development stems from the desire to predict blast interaction 
with liquid blankets in Inertial Confinement Fusion reactors. The model uses a second-order extension of Godunov's 
finite difference method to solve Euler's time-dependent equations of gas dynamics. The method uses a uniform 
Cartesian grid and a simple method for treating complex boundary geometries. The algorithm uses operator splitting 
to solve gas dynamics in multiple dimensions. Results of several problems are qualitatively and quantitatively 
compared with previous work and experimental data. 

1. Introduction 

Over the last several years, Inertial Confine- 
ment Fusion (ICF) has been gaining more atten- 
tion as a viable future power source. As a result, 
increased effort has been focused on analyzing 
the hydrodynamic phenomena which follow after 
the fusion energy release. One such phenomenon 
under  study is that of blast venting though blan- 
kets in ICF reactors. 

In the ICF concept, lasers or heavy ion beams 
are used to heat deuterium and tritium contain- 
ing pellets which are repetitively injected into the 
vessel. The subsequent fusions release energy in 
the form of neutrons, X-rays and debris kinetic 
energy. To shield the first structural wall (FSW) 

from radiation, most ICF concepts incorporate a 
blanket made of either liquid lithium or molten 
Li2BeF 4 (Flibe). More specifically, the HYLIFE 
ICF concept [1,2] uses an encircling array of 
falling slabs or cylindrical jets of lithium or Flibe. 
Highly energetic vapor or blast material is gener- 
ated in the central cavity due to x-ray ablation of 
the exposed blanket surfaces. The blast material 
must vent quickly through the blanket so as to 
avoid accelerating the liquid and generating a 
waterhammer on the FSW. This phenomenon is 
one of supersonic flow through a gas continuous 
two-phase medium. 

Blast venting through ICF reactor blankets 
was first studied by Glenn [3] who modeled the 
problem as supersonic flow through a packed 
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columnar array of cylinders. The model that was 
developed treated the problem as compressible 
flow through a one-dimensional channel with 
varying cross-section, and used steady-state drag 
coefficients. Although radiation heat transfer was 
considered in the calculation, shock effects and 
multidimensional effects were not considered. 

This paper describes the application of a 
multi-dimensional numerical method for single- 
phase gas dynamics in computing transient super 
sonic flow through a gas continuous two-phase 
medium, namely, ICF blankets. The model uses a 
second-order extension of Godunov's finite dif- 
ference method to solve Euler's time-dependent 
equations of gas dynamics. A uniform Cartesian 
grid and a simple method for treating complex 
boundary geometries in Cartesian coordinates are 
used, while multi-dimensional capability is 
achieved through operator splitting. The tech- 
nique has been incorporated into a code called 
the Transient _Shockwave Upwind --Numerical 
_Analysis Method for ICF (TSUNAMI), which can 
be adapted to compute gas dynamics for general 
problems of super sonic gas flows through com- 
plex geometries where the gas is the continuous 
phase. 

2. Mode l ing  and a s s u m p t i o n s  

The model assumes that extremely rapid gas 
flows through coarsely dispersed liquid, as con- 
sidered in ICF environments, can be approxi- 
mated as single-phase gas dynamics flows through 
a fixed geometry, i.e., objects in the flow field 
remain rigid and stationary during venting. The 
accuracy of this assumption depends on con- 
straints such as inertia possessed by the objects, 
surface pressure history, and the duration of vent- 
ing. For most of the time domain considered in 
this study, which is on the order of several hun- 
dred microseconds to one millisecond, scaling as 
well as pressure histories from preliminary com- 
putations indicate only a small change in geome- 
try. Liquid deformation, acceleration and droplet 
stripping at high Weber and Bond numbers on 
liquid surfaces were not considered. 

Other simplifying assumptions are the vapor 

behaves as an inviscid, ideal gas with constant 
specific heat ratio and no heat transfer from the 
gas to the liquid is allowed. This last assumption 
greatly simplifies the computation, and because 
energy loss through heat and mass transfer out of 
the vapor is prohibited, it provides conservatism 
in estimating impulsive surface forces that are 
then used in separate calculations to estimate the 
work done in accelerating the liquid jets or slabs 
of the blanket material. 

The problem of supersonic flow is posed in the 
context of numerically solving Euler's equations 
of inviscid compressible flow. In two Cartesian 
space variables, the conservative form of the 
equation is: 

aU aF x OF y 
+ - -  + - -  - - 0 ,  (1 )  

~t ~x ~y 

where 

U = (p, pu, pv, pE) T, (la) 

FX=(OU, p+ou2, ouv, ouE+up) T, (lb) 

E = e + (u  2 + v 2 ) / 2 ,  ( l d )  

p 
e = p ( y _  1)" ( le)  

U is the vector of conserved quantities, F the flux 
tensor, p, density, u, x-velocity, v, y-velocity, p, 
pressure, and e, internal energy. 

3. Numer ica l  a lgor i thm 

The numerical algorithm used here is an ex- 
plicit, upwind, conservative, finite difference 
scheme based on a second-order extension devel- 
oped by ColeUa [4] of Godunov's [5] first-order 
method. The goal of Godunov's method is to 
compute the flux F of mass, momentum, and 
energy - Eqs. (lb) and (lc) - across cell edges for 
a given time step, and then to perform differenc- 
ing to find the value of U, Eq. (la), at the new 
time. It is assumed that the density, velocity and 
pressure for the entire flow field are initially 
known. 
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The Godunov method treats the jump in prop- 
erties at each cell edge as a discontinuity and 
solves for the flux F using the characteristic 
solution to the generalized one-dimensional Rie- 
mann shock problem. The method presented here 
uses a uniform Eulerian grid in Cartesian coordi- 
nates. The scheme is first developed in one-di- 
mension, then standard operator splitting 
(Leveque [6], Strang [11]) is used to extend the 
algorithm to two dimensions. This paper only 
outlines the method and does not include deriva- 
tions, which may be found in the referenced 
articles [4,5]. The method has 4 steps. 

Step (1) involves discretizing the initial data 
for the uniform Cartesian grid and assigning dis- 
tinct average values of density, velocity and en- 
ergy to each cell (Fig. 1). 

Step (2) involves estimating to second order 
accuracy the conserved quantities on either side 
of every cell boundary at the half time step. This 
is also known as constructing the time-centered 
left and right states which become the inputs to 
the Riemann problem at the cell edges. Charac- 
teristics and flux-limiting are used to determine 
the average properties at the half-time step. The 
notation used here for time-centered values may 
appear implicit. This however, is only notation. 
The method presented here is entirely explicit. 
For left and right states at the cell edge between 

cells i and i + 1, the solution developed by Colella 
[4] is: 

Lrn + I/2 Ifn + 1/2 [V= (p, u, p) T ] (2) 
" i + l / 2 , L ,  " i + l / 2 , R  

= _ & ) , ( 2 a )  

$n+1/2  (i+ 1/2,L) = t~L -- flcCi, (2b) 

p n +  1/2 "+ flL C2, (2C) (i+ 1/2,L) = / ~ L  

p.+i/2 - (~R 1 , (2d) 

t n + l / 2  
( i+1/2,R) = /gR "Jr [~Ci+l ,  (2e) 

pn+l/2 + 2 
0+ 1/2,R) =/~R + flRCi+l, (2f) 

where flux limiting is achieved by: 

( .i) t 
ilL=-- Aui- ~ 2ONX i 

= 0  

/ 
= -  aui+1 

~-0 

Api+ 1 ) At 
Ci+l 2p~+IAXi+I 

if A~- >0 ,  

otherwise; 
(3a) 

if x~+÷l < 0, 

otherwise; 
( 3 b )  

P 
ini t ial  da ta  

radius 
B- 

Fig. 1. Example of taking initial pressure data and assigning average values to corresponding cells. 
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Ap i Api ) At 
c:  & . o  ' 

= 0  

Api+l Api+l  ) A t  

j~O = C:+l PRO 0 Ci+l 2Axi+I  

= 0  

if A ° > O, 

otherwise; 
(3c) 

0 if ~ti+ 1 < 0 ,  

otherwise; 
(3d) 

for 

) OL=qT +½ 1 - - - ( m i n ( A + , 0 ) )  Aq i, (4a) 
Ax i 

( ) OR = q/n+l-  ½ 1 4- ~-----~i.1 (min(A/-+l, 0) )  Aqi+l  , 

(4b) 

qL q'~ + 1 -- Axi = - - U  i Aq i  , (4c) 

0R0=q~+ --½ l + - - u i + l l A q i + l ,  (4d) 
1 Ax i+ 1 j 

q = p , u , v ,  andp ;  
c = sound speed; 

o_ Af- =u i - c  i, and A/+=u i+ C = pc, and 1~ i -- Ui, 
C i • 

The Aq's are computed using a second-order 
upwind difference known as the MUSCL scheme 
of van Leer [12] and are given by: 

Aq= min(l  l qT+l -q"i-1 l, 2 l qi+l - q ?  l, 

21 q/~ - qP- 1 I )" sign( q/n+ 1 -- q n  1 ) 

if ( qi+ l - q?)( q~ - q~-l) >0, 

= 0 otherwise. (5) 

One observes that computing left and right 
states for the Riemann problem only requires p, 
u, and p, while computing the left and right 0's 
and Aq's also requires v, the transverse velocity. 
The reason involves operator splitting. The solu- 
tion to the one-dimensional Riemann problem 
only requires density, normal-direction velocity 
and pressure, but the actual computation of flux, 
Eq. (lb), for the two-dimensional operator split 
scheme must also include the correct transverse 

( n + l ) A t ~  

(n+l/2)At ~ 

n 
ui 

n 
Ui+l 

i-1/2 i+I12 i+3/2 
Fig. 2. Schematic representation of computing time-centered 
left and right states as inputs into the Riemann problem. 

velocity. This is analogous to curve fitting the 
one-dimensional solution to account for coupling 
of the transverse velocity in two dimensions. The 
method for evaluating transverse velocity is given 
in Eq. (6). 

Step (3) is finding the solution to the Riemann 
problem for the given left and right states. This 
requires an algorithm known as a Riemann solver. 
The solver computes the solution of characteris- 
tics in x/t-space which emerge as a result of the 
interaction between any arbitrary initial left and 
right states. For an Eulerian frame calculation 
with fixed mesh, one chooses the solution in x / t  
space corresponding to x / t  = 0. The details are 
not included in here but are provided in the 
reference by Colella [4]. The solution to the Rie- 
mann problem provides the cell edge values for 
p*, u*, and p* at (x, t ) =  (i + l / 2 ,  n + l / 2 )  
used in computing the flux F~_ 1/2- The flux calcu- 
lation also requires knowing v, the transverse 
velocity, which is defined as: 

, n+ l /2  
Ui+l/2 = ~)L + ~L  

= - 1 3 k  

where 

At 
f lL = c iAoi  2A xi 

= 0  

and 

At 
[ ~  = Ci+IAUi+I 2Axi+I  

if u*>__0, 

if u* < 0, (6) 

if u~' > 0, 

otherwise; 

= 0  

(6a) 

if u~+ 1 <0 ,  

otherwise. (6b) 
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Step (4) is the conservative differencing of the 
fluxes to obtain values for density, velocity and 
energy at the new time. In the x-direction, this is 
given simply by: 

At 
- -  F X X U/n+l uin+ A X i (  i _ l l 2 - F i + l l 2 ) .  ( 7 )  

For extension to two dimensions, operator  split- 
ting is used. Operator  splitting relies on the ap- 
proximation: 

At 
0~* = U..". + -~x/(F.~ -Fi+a/z,y), (7a) ~,1 i,J i--1/2,j 

At 
u- 'n '+ l  = U-'*" + - -  F'Y" - -  i , j+l /2)"  (713) ,,1 z,J a y j  ( 1,1-1/2 FY 

In other words, for as ingle  time step, a sweep of 
the entire grid is first done in the x-direction - 
the fluxes computed and conservatively differ- 
ences - then a sweep is repeated in the y-direc- 
tion with u interchanged with v as the transverse 
velocity. This scheme intuitively neglects any cou- 
pled derivative terms, which may create an error 
that grows with each time step. Fortunately, 
Strang [11] showed that sweeping first in the 
x-direction then y-direction for even time steps, 
and y-direction then x-direction for odd time 
steps maintains second-order accuracy in space 
and time provided that the time step is constant 
for any two consecutive steps. 

The time-step is determined by the Courant 
condition, which for all nodes is: 

At At 
l u - c l ~ - ~ x  < 1, I u + c  I ~--~x < 1, 

At 
I v - c l < l ,  and Iv+cl-:--_<l. (8) 

a y  

4. B o u n d a r y  c o n d i t i o n s  

An approximate method of computing bound- 
ary conditions was incorporated to take advan- 
tage of the uniform Cartesian geometry in setting 
up arrays of slabs or cylinders. Two types of 
boundaries - open and impermeable - are mod- 
eled. Open boundaries exist where fewer nodes 

are desired to reduce the computational effort. 
Inflow or outflow at an open boundary can be set 
by a forcing function at the boundary, or, if only 
outflow is desired (i.e. whatever leaves the system 
never comes back) then the flux at the boundary 
cell edge can be set equal to F(U) for U inside 
the boundary cell. That  is: 

Fg +1/2 = F(U~), (9) 

where 

U0" = U(pg,  ug, v~, p~) .  (9a) 

An impermeable boundary, on the other hand, 
permits no flux to pass through normal to the 
surface. To satisfy this condition in Cartesian 
coordinates requires first, defining the nodes 
which lie adjacent to boundaries, second, defining 
a spatial angle for each boundary node, and third, 
computing the Riemann solution such that the 
pressure and density correspond to a zero normal 
flux across the boundary. 

The first step, defining boundaries, requires 
identifying those nodes which lie on or near the 
actual boundary. This may establish a somewhat 
jagged boundary and accuracy will depend on the 
fineness of the mesh. Once the boundary nodes 
have been identified, the normal angle into the 
boundary is assigned to the node. In developing 
TSUNAMI,  the reference angle 0 is defined as 
the angle between the positive, x-axis and a nor- 
mal vector into the boundary (Fig. 3). 

I I I I 
, , ,  , I II ]1  

I I IIII  I I I  
I l l  I l l m  
Gas I i I 
I I I 1 [  
I I ~ f l l l I  
I I I [ 1 1 1 1  

' '-- , 't411 I I l l  I~ ~ern~able I 
Bound,~,y m'l i IXI I I I t I 

, , , * ~ ,  , m I I I lxl ( I 
i i i i i r'.~b.ai i i i i i~ 
I I I I I I I m I I I I I l~l 

l i l t  m l  u id  
J l l l l l  r o l L !  q x 

Fig. 3. Schemat ic  r ep re sen t a t i on  of  grid def in i t ion  and  nodal-  
ization of  i m p e r m e a b l e  b o u n d a r y  cells. Shaded  cells are  
b o u n d a r y  cells. Cells on  the  l iquid side are  nul l  cells and  not  
subject  to computa t ion .  
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Modeling the zero-normal flux condition at the 
impermeable boundary employs a technique of 
mirror imaging. This technique utilizes the Rie- 
mann solver to predict the correct density and 
pressure for a shock or rarefaction contacting an 
impermeable surface. One begins by creating an 
imaginary node opposite but directly adjacent to 
the boundary node, possessing the same density, 
tangential velocity and pressure, but opposite 
normal velocity. As with ordinary interior nodes, 
left and right states must be computed. However, 
by inspection, one can see that for boundary 
nodes all the correction terms go to zero, and the 
result is: 
p n + l / 2  
0,L = pg, (10a) 

un+l/2 n0,L = ug cos 0~ + vg sin 0~, (10b) 
pn+l/2 -n  O,L =VO, (IOc) 
pn+l/2 o,R =o~, (lOd) 
u n + l / 2  = . n + l / 2  (lOe) nO,R --UnO,L 

pn + 1/2 _ n n  (10f) 
0,R -- /~0" 

Equations (10a-f) provide the inputs into the 
Riemann problem whose solution provides the 
pressure and density. The tangential velocity at 
the boundary node: 

n + l / 2  
Ut0 = v~ cos O~- u~ sin O~ (11) 

is decomposed back into x-y coordinates accord- 
ing to: 

U~ n + l / 2 =  --U~g 1/2 sin 0~, (12a) 

u~n+l/2  n + 1 / 2  = ut0 cos 0~, (12b) 

and then all the properties inserted into (lb) or 
(lc) to compute flux. Conservative differencing is 
performed using (7a) or (7b). The above tech- 
nique works because both shock and rarefaction 
reflections at walls are exactly analogous to the 
collision of two shocks or rarefactions of equal 
magnitude. 

An important note is that boundary nodes do 
not necessarily remain boundary nodes when the 
sweeping directing changes (e.g. a vertical wall 
appears as a boundary when sweeping in the 
x-direction but not the y-direction.) Also, the 
apparent angle of a boundary in one direction 

m 

Fig. 4. Iso-density contours of  Mach 3 shock in air diffracting 
around a corner. Left figure computed using TSUNAMI  code 
with 50 × 50 grid, and right side computed by Carafano [14] as 
presented by Hiilier and Graham [7]. 

changes by ~r/2 when sweeping in the other 
direction. 

5. N u m e r i c a l  re su l t s  - b e n c h m a r k s  

The operator split, numerical method used in 
TSUNAMI, with exception of the current bound- 
ary condition method, has been shown to be 
accurate in computing idealized compressible flow 
[13,15]. To test the applicability of the approxi- 
mate boundary conditions, four comparisons are 
presented here. The first two are qualitative com- 
parisons of shock diffraction around a corner and 
shock flow past a cylinder while the latter two are 
quantitative comparisons with experimentally ob- 
tained shock retardation and shock venting data. 
For the first two problems, iso-density contours 
provide a convenient method of visualizing the 
gas dynamics and comparing qualitative features. 
Non-dimensional units are used. 

Figure 4 shows a comparison of density con- 
tour plots for Mach 3 shocks diffracting around a 
sharp corner (left TSUNAMI, right Carafano 
[14]). Some discrepancies exist such as a higher 
wall shock speed'at 90 degrees which results in a 
flatter and smoother profile than in the other 
calculation. Also, some of the internal details to 
the right of the vortex swirl are different. Some of 
these differences may be attributed to coarser 
mesh spacing and shorter physical time of calcu- 
lation in our calculations. Overall, however, most 
of the major phenomena such as the vortex swirl, 
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t ?" 

\ 

- 

Fig. 5. Comparison of iso-density contours for Mach 1.65 
shock in air over a cylinder computed using TSUNAMI with 
80 × 80 grid to Mach 1.65 shock through a bank of cylinders 
(only one cylinder shown). From Bowman and Niblett [8]. 

transmitted shock front and downward propagat- 
ing acoustic wave are all represented. 

Figure 5 shows density contours for calculated 
shock flow over a cylinder compared with a pho- 
tograph of the real process (Bowman and Niblett 
[8]). In the calculation, the approximated cylinder 
is 16 nodes in diameter. Remarkably good agree- 
ment exist in the qualitative features between 
calculation and experiment. However, a small dif- 
ference does exist in the width and curvature of 
the Mach stems which trail behind the cylinder. 
A closer inspection reveals that the cylinder in 
the photograph is somewhat elliptical, which may 
be the cause of the discrepancy. 

In the third benchmark test, we attempt to 
predict the shock retardation for the experimen- 
tal set-up by Kawamura and Kawada [9] shown in 
Fig. 6, and then compare the computed results 
with the experimental data. Their use of air at 

Experimental Apparatus 

i ~ L = 45 cm------~ 

• 

Fig. 6. Experimental apparatus used in experiment to study 
shock retardation with obstructions in the flow path. From 
Kawamura and Kawada [9]. 

Table 1 
Shock retardation results 

Mach No. Blockage Retardation [r /L] 

Experiment TSUNAMI 

1.25 58% 3.2% 3.1% 
75% 5.4% 6.1% 

1.36 58% 3.7% 3.3% 
75% 7.5% 8.0% 

approximately standard atmospheric conditions 
and relatively low supersonic Mach numbers 
makes the experiment suitable for modeling using 
idealized compressible flow relations. Table 1 
gives a comparison of the results. The calcula- 
tions are within 5% to 10% of the reported value 
for shock retardation, and lie well within the 
reported margins of experimental error. The cal- 
culations for 58% blockage tended to under esti- 
mate the retardation while the calculations at 
78% blockage over estimate the retardation. This 
was traced back to the nodalization and use of 
integer spaced grids which resulted in slightly 
smaller percentage blockage for the 58% case 
and slightly higher percentage blockage for the 
75% case. 

The fourth benchmark attempts to predict the 
pressure transducer profiles for a shock tube ex- 
periment, which is used to study shock interac- 
tions with an array of vertical, cylindrical liquid 
jets. The experiment has a square test section 
with an orifice plate on top and transducers along 
the side (Fig. 7). Water is delivered down through 
the orifice plate to establish the jets. A horizontal 
shock tube then delivers a shock into the test 
section, which is housed inside a pressure vessel. 
The ambient gas in the vessel is air. The experi- 
ment records the time-dependent pressure on the 
test section side wall generated when a shock 
propagates through the jet array. Algorithms were 
developed to automate the creation of boundary 
conditions corresponding to the jet array, as were 
color and grey scale visualization techniques with 
animation capabilities. 

Figure 7 is a computed density grey-scale visu- 
alization of shock propagation through the jet 
array. The first frame shows the shock wave just 
prior to array contact. The second frame shows 
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shock venting through the array and also a slightly 
irregular reflected shock due to the offset in the 
initial row of jets. The third frame shows venting 
out the back of the array with preferential vent- 
ing along the edges of the walls because of the 
direct line-of-sight. Also, the contact surface be- 
tween expanding driver gas and the shocked gas 
now approaches the array and interacts with the 
reflected shock, causing the reflected shock to 
reflect again. The last frame shows driver gas 
stagnating against the first row of jets. The initial 
shock has already vented through the array and 

1.0 

.75 - 

.5- 

.25 - 

0 

M a t h  3.2 Shock o n  Jet Array - Experimental  Data 

B 

t 
~ I00 150 200 
tjme [ m i ~ n d s ]  

A B D E 

0 10 cm 20 30 

Fig. 7. Computed shock wave interaction with a jet array 
shown at 75 ms intervals. Grey-scale shows mass density with 
magnitude increasing from light to dark. A 100 x 250 grid was 
used to approximate 48 jet geometry. 

1.25 

1.0 

.75 

j., 

0 

M a t h  3.2 Shock on Jet Array - T S U N A M I  Calculation 

B \ 

A 

0 5O 
T 1 r - - - -  

100 150 200 
time [micto~conds] 

Fig. 8. Two graphs comparing experimental and computed 
pressure traces for 5 t ransducers  mounted  along the side of 
the test section in the  liquid jet array shock tube experiment. 

reflected from the back wall with some of the gas 
escaping through the short open sections on ei- 
ther side at the rear. This generates roll-wave 
shaped density distributions as flow is redirected 
and vented out sideways. 

Figure 8 is a comparison between experiment 
and calculation of the transient pressure traces 
recorded at 5 positions along the wall for a Mach 
3.2 shock. The arrival times of the shock as well 
as the peak pressures compare within 10% for 
the first 3 traces but show greater error farther 
downstream where the shock has been attenu- 
ated. The greater error downstream is at- 
tributable to the difference between the liquid 
jets in the experiment and solid cylinder approxi- 
mation in the calculation, and the effect of 
boundary layers on the test section side walls. 
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The experimental data shows a number of 
significant kinks and multiple peaks in the pres- 
sure traces arriving at 70, 110, and 160 ms for the 
second, third, and fourth transducers respec- 
tively. The pressure trace at transducer B shows 
the shock arrival at approximately 70 ms followed 
by an immediate rise in pressure to nearly 1 MPa. 

There is however a noticeable change in slope, 
that is a kink, in the pressure rise near 0.25 MPa. 
Recalling the location of transducer B from Fig. 
7, this corresponds to the initial shock wave 
reaching transducer B, then striking and reflect- 
ing off the first row of jets. There is some small 
time delay for the reflected overpressure to be 

t~ k.-/¢"~ k--/f'x k.-/ (3 
o X o ; ~ o / ~ o  9o 

) . . o X o ; ~ o ; , o  j 
) X o X o ; , o ; , o  / 
)L'o~'OvO~ / 0 0 0 0 ) 0 0 0 0 0 0 ) 0 0 1000 

cylinder array / 

~ vessel 
wall 

I I I 1 

0 1 2 3 4 5 
meters 

Fig. 9. Computed blast venting through liquid blanket in the HYLIFE-I ICF reactor shown clockwise from top, left at 80 
microsecond intervals. Same density grey-scale as in Fig. 6. One-quarter of the reactor cavity is simulated using a 250 X 250 uniform 
grid with 54 cylindrical jets. 
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sensed by transducer B. Another  interesting phe- 
nomenon is the occurrence a pressure spike rising 
to about 0.12 MPa at transducer C which arrives 
at 110 ms followed by a larger one rising to 0.5 
MPa at 120 ms. The calculation predicts and 
resolves both the kink in transducer B's pressure 
trace and the dual peaks in transducer C except 
with greater time separation. The pressure trans- 
ducers used in the experiment have a response 
time of 2 /zs. In addition, the shock tube goes 
through a transition from round to square prior 
to the test section which can diffuse the shock 
front. Both of these factors may contribute to a 
shallower observed pressure rise for the shock. 
Overall, however, the majority of the venting 
phenomenon such as shock arrival times, re- 
fleeted overpressures, and the pressure traces 
with multiple shock reflections are quantitatively 
and qualitatively predicted. 

Visualization and animation are important 
techniques in understanding gas dynamics pro- 
cesses. One example is that of supersonic flow 
separation and its effect on form drag. (One 
should not confuse this with boundary layer flow 
separation which is a viscous effect. The gas 
dynamics here are inviseid.) The code predicts 
that the surface integrated form drag is greater 
for the last row of jets than for some interior jets. 
Visualization reveals that flow is separating over 
each of the last jets - i.e. each of the last jets 
almost always has a pair of standing Math  s tems  
off the back separating the field around a jet  into 
a higher pressure and density flow around the 
front and sides and low density and pressure flow 
behind (Fig. 7, frames 3 and 4 - light streaks 
behind last row). 

6. Numer ica l  results  - ICF blast  vent ing 

Two ICF blast venting situations are pre- 
sented. The first example is a simulation of blast 
venting through a cylindrical array in the 
HYLIFE-I  ICF reactor [1]. An energy of 2700 MJ 
has just been released, of which about a third 
goes into vapor energy. The initial conditions in 
the central cavity are taken to be the same as in 

the previous study by Glenn [3], and venting 
occurs through a 50% packing fraction hexagonal 
array of 20 cm diameter liquid lithium jets. 

-3 -2 -1 0 1 2 3 
meters 

Fig. 10. Computed blast venting through liquid blanket in the 
HYLIFE-II ICF reactor shown at 90 ms intervals. Same grey 
scale density as above. One-half of the reactor cavity is 
simulated using a 300 × 600 uniform grid with 37 slabs. 
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The code simulated the first 1000 ms. Figure 9 
shows  a simulation of blast venting in the 
HYLIFE-I reactor just described. Blast venting is 
preferential in the directions with direct line-of- 
sight out to the vessel wall. Venting in the zero 
degree azimuthal angle is slightly faster than at 
the 60 degree position due to the slightly wider 
spacing in the horizontal direction which is un- 
avoidable in when trying to approximate a hexag- 
onally packed array on an integer Cartesian grid. 
Flow separation (indicated by light colored zones) 
is evident behind several outside cylinders for 
sustained periods of time causing the impulse to 
these outer jets to be greater than the impulse on 
jets just inside. This may result in increased FSW 
erosion due to jet impact. 

The code predicts asymmetric wall loading with 
average wall gas shock pressures over 5 MPa and 
peak pressures over 35 MPa. Average liquid ve- 
locities due to drag are over 200 m/s .  These 
estimates are almost an order of at magnitude 
larger than previous estimates [3], which did not 
consider shock or multi-dimensional effects. 
However, the lack of heat transfer from gas to 
liquid makes the model conservative. Note that 
the assumption of stationary geometry does not 
hold for these high velocities. This indicates that 
at least for the HYLIFE-I case, it is likely that 
blanket will close and be propelled destructively 
toward the FSW. 

The second example is blast venting through a 
complex slab array in the HYLIFE-II [2] reactor 
cavity. The initial energy release is 350 M J, a 
third going into vapor energy. The initial condi- 
tions are scaled from the previous HYLIFE study 
[3] except the working fluid is now Flibe. The 
code simulates blast venting up to 500 ms. Figure 
10 shows the flow visualization for the HYLIFE-II 
reactor with a 58% packing fraction of liquid 
slabs. As in Fig. 9, blast venting is preferential in 
the directions with direct line-of-sight out to the 
vessel wall. Wall loading is also very asymmetric. 
The code predicts much more mild average wall 
gas shock of 1 MPa with peak pressures of around 
3 MPa. Average liquid velocity is predicted to be 
about only 1 m/s .  More specific results for blast 
venting through blankets in ICF can be refer- 
ences in another article by the authors [10]. 
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7. Conc lus ions  

A method of modeling transient, supersonic 
flows through a gas continuous, two-phase 
medium by considering only single phase gas dy- 
namics in a fixed, two-dimensional geometry has 
been presented. The method incorporates a 
proven second-order Godunov finite difference 
method with operator splitting to track shocks 
with high resolution in two dimensions. The use 
of Cartesian coordinates and straight forward 
boundary conditions lends this method to many 
other applications where a need exists for com- 
puting gas dynamics in complex geometries. The 
combined numerical method and boundary con- 
ditions have been compared with other numerical 
and experimental data and have been found to 
show good qualitative and quantitative agree- 
ment. 

Application of the code to early time blast 
venting in the HYLIFE ICF reactor indicate that 
asymmetric wall loading, FSW erosion, and wa- 
terhammer will be important considerations in 
ICF reactor design. 

The present model has been shown to be ap- 
plicable at early times for gas continuous two-fluid 
mediums where the gas can be approximated by 
ideal compressible flow. Future work to enhance 
the accuracy and applicability to ICF will require 
consideration of real gases, radiation, condensa- 
tion, moving boundaries, fluid-structure interac- 
tions, and viscous effects. 

8. Nomenc la ture  

C Lagrangian (mass coordinate) sound speed, 
c sound speed, 
E total energy  - sum of kinetic and internal, 
e specific internal energy, 
F tensor representing flux of U, 
p pressure, 

q generic variable which can be p, u, v, or p 
U vector of conserved gas dynamics quantities, 
u x-direction velocity, 
V vector of primitive variables (p, u, p), 
v y-direction velocity, 
x abscissa in Cartesian coordinates, 
y ordinate in Cartesian coordinates. 
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8.1. Greek  symbols  

/3 i n t e r m e d i a t e  ca lcu la t ion  var iable ,  
7 ra t io  o f  specif ic  heats ;  ad iaba t i c  const. ,  

charac te r i s t i c  veloci ty  u, v, u + c, v + c, u - ¢, 
or  v -- c, 

0 angle  m a d e  with  posi t ive x - a ~ s ,  

p mass  density.  

8.2. Superscripts 

~ i n t e r m e d i a t e  solut ion,  
- lef t  t ravel ing wave (u - c o r  v - c)  so lu t ion  
+ t igh t  t ravel ing  wave (u + c o r  v + c)  solut ion,  
0 zero-wave (dens i ty  wave,  u or  v)  solut ion,  
n index for  t ime  step,  
x x -d i rec t ion  (hor izontal ) ,  
y y -d i rec t ion  (vertical),  
. so lut ion at  the  edge  be tween  two nodes ,  
T mat r ix  or  vec tor  t ranspose .  

8.3. Subscripts 

0 b o u n d a r y  node ,  
i g ene t i c  index in x -d i rec t ion ,  
j g ene t i c  index in y -d i rec t ion ,  
n n o r m a l  d i rec t ion ,  
t t angen t i a l  d i rec t ion ,  
L l e f t -hand  state ,  
R r igh t -hand  state .  
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